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On the Absence of Breakdown of Symmetry for the 
Plane Rotator Model  with Long-Range 
Random Interaction 
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We study the plane rotator model with hamiltonian 

1 cos(0x - 0y) 
- 2 x~/xy Ix __yl3+e 

where Jxy for different pair (x, y) are independent symmetric random variables. 
It is proved that for almost all J, all the Gibbs states P(J) are rotation invariant. 

KEY WORDS: Random interaction; random variable long range; spin 
glass; relative entropy. 

1. INTRODUCTION 

A spin glass is a dilute magnetic alloy where magnetic impurities, say Fe, 
are dilute in a nonmagnetic metal, say Au. Experimentally the susceptibility 
have a cusp at some temperature Tsa. (~ It is believed (2) that this comes 
from the Ruderman-Kittel-Kasuya-Yosida (RKKY) spin-spin interaction 
of the impurities. This is given by the formula 

O ( x ,  y )  --- J ( x ,  y)S(x)  �9 S(y) (1.1) 

where 

A cos(2k,~> -yl) 
J ( x ,  y )  - Ix - y l  3 

S(x) is the spin of the impurity and k r the Fermi momentum. The RKKY 
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interaction is long range and rapidly oscillating. The first simplification of 
this model comes from Edwards and Anderson, (3) who argue that this is the 
oscillating of the exchange interaction which is essential to produce a spin 
glass. They introduce a model with random short-range interaction: the 
J(x ,  y) were Gaussian random variables. They introduce two order param- 
eters which characterize a spin glass phase: Let ( ) ( J )  denote expectation 
with respect to a Gibbs state corresponding to a given configuration of 
exchange interactions J. Let F denote the expectation with respect to the 
random variables J. The first parameter is the mean magnetization 
flz[(s3)(J)] which is assumed to be zero. The second parameter is qEA 
= E [(S)(J)  �9 (S)(J)],  which is strictly positive in a spin glass phase. 

Historically the first investigation was about mean field theory: Ed- 
wards and Anderson (EA) (3~ predict a spin glass phase. Sherrington and 
Kirkpatrick (SK) (4) define a random Curie-Weiss theory which predicts 
also a spin glass phase but leads to negative entropy at low temperature. 
The use of the n-replica trick has been suggested as cause of this unphysical 
phenomenon. An alternative approach to this problem was proposed by 
Thouless, Anderson, and Palmer (TAP) (5~ in which the n-replica trick is 
avoided. The so-called TAP equation for the two previous order parameters 
of EA shows a spin glass phase for the SK model. There exists a rigorous 
proof of this fact in Thompson. (6) 

For a more realistic model of spin glass, the existence of a phase 
transition from conventional phases into a spin glass phase is much less 
clear. One important question is the lower critical dimension D O for spin 
glass phase i.e., if D > D O there is a spin glass phase and if D < D O there is 
no spin glass phase (in the case of nearest-neighbor interactions). There are 
many controversies on the subject (see the paper of S. Kirkpatrick in Ref. 7 
and Villain in Ref. 7). Most of the authors expect that D O = 2 or 3 of the 
Ising model and D o = 3 or 4 for a model with continuous internal symme- 
try such as the classical x - y  model (see Refs. 8-13). 

Rigorous results on spin glass are few: Vuillermot (~4> proved that the 
infinite-volume limit of the free energy (with free boundary conditions) is 
almost surely equal to the infinite-volume limit of the quenched free energy 
[i.e., (1/IAI)E(logZA) ]. Vuillermot gave abstract conditions on random 
variables J. In the case J(x ,  y)  = Jxy/ lx  - yl ~a where d is the dimension of 
the lattice and Jxy are independent random variables, say Bernoulli sym- 
metric random variables, his condition is equivalent to a > 1. This is the 
usual condition to obtain a well-defined infinite-volume free energy. 

Ledrappier in Ref. 15 proved similar results in the case of the nearest- 
neighbor Ising model. He proved also a variational principle in an abstract 
case where J need not be independent. 
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Khanin and Sinai (16) proved the stronger result that if a > 1/2 then 
the infinite-volume free energy exists almost surely, is independent of the 
boundary condition, and is almost surely equal to the infinite volume 
quenched free energy. It is asserted (without proof) that if a < 1/2 infinite- 
volume free energy is almost surely divergent. The proof is given for the 
Ising system, and it is asserted, without proof, that the same result is true 
for the bounded continuous spin model. 

There are also results related to the uniqueness of Gibbs states: 
In one dimension and long-ranged Ising model Khanin (aT) proved that 

if a = 3 /2  + e then for almost all J there is only one Gibbs state P(J). For 
the same model Cassandro, Olivieri and Tirozzi (18) proved that the infinite- 
volume free energy is almost surely C o~ in fi and in the magnetic field h. 
They proved the same result for the infinite-volume quenched free energy. 
Remark that in the case where all J~y = 1 the previous results are false: 
there exists spontaneous magnetization. (jg) The random character of the 
interaction is crucial. 

In the two-dimensional nearest-neighbors Ising spin glass Avron, 
Roepstorff, and Schulman ~2~ proved that the first parameter of Edwards 
and Anderson vanished; in fact they proved more: for any 

--0 

In one and two dimensions Vuillermot (~3) proved, by using a Bogoliu- 
boy-type inequality, that in models with continuous internal symmetry 
there is no mean ordering. He did not prove that the second-order parame- 
ter of EA (qEA) vanishes but rather that almost surely 

 imf ' x = 0 ( 1 . 2 )  

,im [ 1 1 A-~ 2 ~-~ (S}3) ) ( J )  = 0  (1.3) 

where Sx ~3) is the 3-component of the spin Sx. A more realistic parameter 
for spin glass phases is, as quoted by Vuillermot, 

A-,~ 2 ~-~ Sx (3)) or az ( Sx(3 ) 2( j)  A->Z 2 ~ ~ ) (1.4) 

On the other hand, in the two-dimensional case with long-range exchange 
J(x, y )= Jxy / [x -y l  ~ with Jxy independent symmetric Bernoulli random 
variables, Vuillermot condition for zero mean ordering is a/> 4 + e. Let us 
remark that if a /> 4, Pfister and Fr6hlich (21'22) have proved that there is no 
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breakdown of the symmetry and the sign of Jxy can be arbitrary. There 
theorem applies in the spin glass case, if the J~y are bounded random 
variables. 

In this paper we study the classical (x-y) spin glass model in two 
dimensions with long-range exchange interaction J(x, y) = Jxy/[ x -Y l  3+~. 
By using a random version of the relative entropy argument of Fr6hlich 
and Pfister, (22) we prove that for almost all J there is no breakdown of the 
symmetry. This is a stronger result than the vanishing of the EA parameter 
qEA" Remark that if all Jx. are equal to unity there is breakdown of the 
symmetry (see Kunz and Pfister(23)). 

Since, as quoted by most authors (Anderson (v) or Kirkpatrick(7)), the 
energy H A ( J ) ~  { [H~(J)]} 1/2 the reader can wonder why the argument 
does not apply when J ( x , y ) =  J x y / ] x - y l  2+~ because in this case the 
Hamiltonian is "equivalent" to the ferromagnetic one with exchange inter- 
action J(x, y) = 1~Ix -yl 4+2e, which is the usua[ condition for absence of 
breakdown of symmetry. The same kind of argument implies that in the 
three-dimensional nearest-neighbor classical x - y  spin glass model there is 
no breakdown of the symmetry. In fact HA(J,o A, aAc ) ~ ~_[h2A(J, o A, o10] 1/2 
is true (as the law of iterated logarithm for tail sums (24) asserts) for a given 
configuration of the spins. 

We have to consider simultaneously all the (strongly dependent) ran- 
dom variables HA(J, %,  % 0  obtained by changing the spin configuration 
and not only one random variable. This can be done and gives useful result 
in the case a = 3 + e. In the a = 2 + c, c < 1 or in the three-dimensional 
case the arguments used in this paper do not give useful results. A new 
method has to be found. 

2. DESCRIPTION OF THE METHOD AND MAIN RESULTS 

One considers the classical x - y  spin glass model in two dimensions, 
the Hamiltonian of which is given by the following: If A is a finite box 

HA(OA,OAc) = _ ~,, ~ Jxy cos(O x -- O v ) (2.1) 
Ix - yl 3+E 

where 0 A = (0x)x~ A is a configuration. For any x, 0 x belongs to the torus II. 
We assume that (J~y)(x,y) c~' are independent identically distributed random 
variables with mean zero. We assume also that the J and the 0 are 
independent. For the sake of simplicity we will assume that Jxy = -+ 1 with 
probability 1/2. 

The result of this paper is the following: 

T h e o r e m  2.1. Let P(J) be any external Gibbs state corresponding to 
the Hamiltonian (2.1). Then for almost all J, P(J) is invariant by rotation. 
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One remarks also that the Theorem 2.1 implies 

<cos o:`>(J) = re(J)  (ao) cos o:` = 0 

for almost all J and in particular 

(i) E(<cos ox>~,~) = 0 

(ii) qEA = E((cosOx)~j)) = 0 

The proof is based on the following arguments which come from Pfister (20 
and Fr6hlich and Pfister. (22) 

Let P be an external Gibbs state and PA be the Gibbs distribution in a 
finite volume A given a boundary condition 06,, that is 

exp - /~HA(0A, 0A~ )I-L ~A dOx 
PA(dOa, 0Ac ) = Za(0ac ) (2.2) 

Giving a ~ U z2, a = (a~)xEZ2 in such a way that a x = 0 except in a finite 
subset of Z2, say A o then one defines 0 + a as (0 + a)~ = 0~ + a~ Vx ~ Z2, 
and let % P  be the image of P by the map 0 ~ 0  + a. It is clear that %P is 
absolutely continuous with respect to P. Moreover 

a ,  o e  [cos(0x + dP - exp fl x, y ~ [x - y[3+, - Oy - a x ay) - cos(0:, - 
x4=y 

(2.3) 
If Ao is finite the sum in the right-hand side of (2.3) is bounded since 
a~ - ay = 0 if (x,  y )  belongs to A~). The relative entropy raP with respect to 
P is given by 

( d~-oP t S ( % P / P )  = - (P(dO)loga dP = ( % H  - H ) e  (2.4) ) 

One can look instead at the relative entropy of "raP | r _ a P  with respect to 
P | P; this gives 

S("l'ae ~ "l" a P / P  @ P )  = (,'l-all + r a n  - 2 H ) e  (2.5) 

One remarks 

S ( % P  | r _ a P / P  | P )  = S ( % P / P )  + S ( r  a P / P  ) (2.6) 

By the Jensen inequality S ( % P / P )  > 0 and S ( r _ a P / P )  >>- 0; therefore if 
S ( r ~ P / P )  + S ( r  a P / P  ) < k we get S ( r ~ P / P )  <<, k. 

Now we choose the (ax)xE~ in the following way: Let ix] = Max(Ix]f, 
ix2] ) if x = (x 1 ,x2) ~ Z 2. We rotate all the spins 0 x which belong to a square 
A t centered at the origin (defined by Ix I < l) by an arbitrary t E FI. 
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On each crown (defined by Ixl = const.) we rotate the spins 0 by 
L 

2x 1 a~=alx I -  f ( l , L )  ~= I ~ if l < l x l  < L 

where 

(2.7) 

L 

F(I ,L)  = ~ 1 / k  
k = l  

a x = O  if I x l > L  

Call at, L such a rotation. 
If we can prove that almost surely (with respect to J )  and uniformly 

with respect to l 

lim S(%, ,LP/P ) = 0 (2.8) 
L---> oe 

then lim/i_,~%t, cP  is absolutely continuous with respect to P (by the Jensen 
inequality and the fact that (2.8) implies: there exists a measurable function 
k(J)  such that Prob[k(J)  = m] = 0 and S(%l, r e / e  ) <<. k(J).  

On the other hand limL__,~%t.tP restricted to A t coincides with the 
Gibbs states/;  obtained by turning all the spins of an angle t, therefore fi is 
absolutely continuous with respect to P. Since P is extremal, this implies 
P = ft. This is Theorem 1. 

Instead of proving (2.8), we prove the following proposition which 
implies (2.8): 

Proposition 2.2. Uniformly with respect to I, uniformly with respect 
to 0, almost surely with respect to J 

lim AH(at, L ) =  lira 1 c ~  1 ~  4 [ - "caz'rH - ~'-a"LH + 2HI = 0 (2.9) 

trlomarR. The crucial fact is the uniformity with respect to 0. Non- 
uniform results are trivial but useless. 

One remarks that AH(at, L) can be written as 

Jxy cos(O x )sin2( ~ -  ay AH(O,,L) = - x~,y I x _):13+, - Oy 2 ) (2.10) 
x ~ y  

because 

cos(0 + a) + c o s ( 0 -  a ) -  2 cos(O)= 4cos0 sin2( ~ ) 
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Since 

we get 

a x = O  if x ~ A ~ = { x ~ Z 2 / [ x [ > L )  

ax = a m if x ~ A ,  

2 + +2  Z (2.11) 
x E A  t x E A L  \A t X~AL \A/ 
yEA~ y E A L \ A  t yu:AeL 

Therefore, if A l and A 2 are two boxes, we will define 

Jx, 6 )sin2( ax 
a / - / ( o a , , o a k = -  ~ Y~ -71  ' + ~ c ~ 1 7 6  . - a , ,  ) 

x E A  I y e A z \ { x }  IX 2 , 

(2.12) 
The strategy of the proof of the Proposition 2.2 is the following: 

Step 1 

We prove that we can restrict in (2.11) the two sums 

~,, and Z 
x@Al x E A L \ A t  
y ~ A ~  y@A~ 

to finite volume one; this comes from the following lemma: 

Lemma 2.3. Uniformly with respect to J, A2,0 & if JAil = L and 
dist(A1, A2)/> L 2 then 

IAt/(0a, ,0A~)I ,< K , / L  ~ (2.13) 

for some constant K I. Therefore, we can assume y E Ac2+t in the two 
previous sums. 

Step 2 

We prove that we can restrict the two previous sums to a smaller 
volume by using probability estimates. We prove the following lemma: 

I_emma 2.4. Uniformly with respect to I,O(AL +z),O(AL2+t\A2L +t ) and 
almost surely with respect to J 

lim ]AH(O(Ac+ l), 0(AL2+ t\AzL +/))] = 0 (2.14) 
L---~ oo 
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Step 3 

We are reduced to estimate the contribution of 

aH(0(AL+,) ,  O(A2,=+,)) 

To do this, one decomposes crowns AzL+z\AL+ t and AL+/\A t into crown 
of width L/2, L /2  2 . . . . .  L /2  K, respectively, and K will be chosen such 
that L/2  I<= O(logL). This construction will be recursive. At the end we 
get a family of crowns {-~i (K), i = 1 , . . . ,  2 K + 1} centered at the origin. 
We get the following hierarchy: 

aH{0(AL+,),  0(&L+,)} 

= 2AH(0(A,), 0(-g~ K+ '))) 

2K+1 

+ 2 
j = l  

K 

+ E Rp (2.15) 
p = 2  

for a given p, Rp corresponds to terms as 

AH(O(~j(P)),O(%.?I)) or AH(0(~j.( '))O(-~?~)) 

which are smaller than those corresponding to adjacent crowns. We prove 
the following lemma: 

Lemma 2.5. Uniformly with respect to l and O(A2L+I ) and almost 
surely with respect to J 

K 

lim X Rp= 0 if K =  O(logL) (2.16) 
L--) oc p = 2  

Step 4 

The last step consists in estimating the first three terms of the right- 
hand side of (2.15). This corresponds to a "classical (x-y) model with 
interaction only between adjacent crowns of width log L." For this model, 
we prove by using an L ~ estimate the following lemma. 

Lemma 2.6. There exists a constant K 2 and for any l a constant 
Lo(l ) such that uniformly with respect to 0 and J 

IAHI < K2(logL) -~ if L > Lo(l ) (2.17) 

Therefore 
lira IAHI = 0 (2.18) 

L--+~ 
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3. PROOFS OF THE PREVIOUS LEMMAS 
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Step 1 

Proof of Lemma 2.3. This is simply 

laH(O(A,),O(A2)) I < ~ ~ 1 ~ A ,  y :lyl~L2 [yl 3+' 

for some constant K]. 

Step 2 

- - K L 2 X  - g 1 - KjL-2, 
( L 2 )  l + e  

(3.1) 

Step 2 is based on the following classical probability estimates of large 
deviation of sum of independent sub-Gaussian variables. 

Lemma 3.1 (Bernstein inequality). Let X 1 . . . . .  X n be n sub- 
Gaussian independent random variables; then 

(3.2) 

Now, the trick to be used is the discretization of the 0. 
We expand 0 x into dyadic expansion. From the measure theoretical 

point of view this is an isomorphism: 

 xx,n 
0 x = 2n with )tx,n E {0, 1) 

n = l  

and the Lebesgue measure on I I~[0 ,  1] is nothing but the product measure 
on (0, 1} ~* given byp(0)  =p(1)  = l /2 .  For a given M one defines 

M 
�9 x,. 1 (3.3) 0} M) = 2 2~ clearly IOx - O}M) I << 2-- ~ 

n = l  

Therefore 

,cos(Ox_ Oy )_cos(O(M) _ O)M)), < 21sin ( Ox-- O~M) -- Oy + O) M) ) 

< 21-M (3.4) 
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Thus, if 

AH(O(M)(A,), O(M>(A:)) 

Jxy cos(OSM) ( ~ )  = -- x~A, ~] IX _ y[3+, -- 0)M))sin2 ax -- ay (3.5) 

y ~ A 2  

one gets 

IAM(O(A,),O(A2))-- AM(O(U)(AO, O(M)(A2))I < const.lA,[2 i-M (3.6) 

In particular in the case where A l = A(r+O, we choose M such that 

[AL+t[2 l-M < ( logL)-"  (3.7) 

and we can assume I < L; a choice is 

[ l~176 1 
M = log 2 

We remark that M = O(logL). Therefore, it is sufficient to prove Lemma 
2.4 with discretized 0 (M) where M--- O(logL). In order to avoid involved 
notation, we prove Lemma 2.4 with 0(M)(A/:+t\A2L+~) is replaced by 
o( M) (A( L + I)2kA2( L + t) ). 

Let L 1 = L + l, we subdivide the box A/~ into boxes A~ of side 2L l . 
AL~ will be the centered one. We get 

A~ c AL]\A2L I 
an(O(M)(AL,),O(~)(A,)) 

(3.8) 

Now we estimate AM(O(M)(AL,),o(M)(Ai)). 

I .emma 3.2. There exists a constant K 2 such that 

Prob[ at least for one configuration pair 0 (M)(AL,)0(M)(Ai) 

[AH(O(M)(AL,),O(M)(Ai))I >1 t~+~/Izi[3+~ ] 

~< 2(2i)2C~exp- L2+2'/K] (3.9) 

where z i is the center of Ai and 8 is any real positive number. 

Proot Let us fix the configuration o(M)(Ac,),o(M)(A~) and define 
the random variables: if x E AL, and y ~ A~ 

- - 

,l(x, y) - Ix - yl ~+' 
(3.10) 
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Then 

A H ( O ( M ) ( A L I ) , O ( M ) ( A i ) )  __ 1 ~ Tl(x, y) (3.11) 
Izi] 3+* x~AL, 

y~Ai  

It is easy to see that E(~) = 0, n:(~ 2) < K22, and [~] < K 3 for some constants 
/(2, K 3. Therefore, the random variables 77 are sub-Gaussian random 
variables and the variance of ~,xeA<,yeafl(x,y) satisfies the following 
estimate: 

D = s EO?2(x,y)) < K~L 4 
XEAL I 
y~A~ 

Now if we choose t in the Lemma 3.1, as t=L~+~/~/-D we get t >  

Prob 

L~+~/K2and 

2 > 
X~AL~ 
y~Ai 

L2+28 
< 2exp K22 (3.12) 

Now, using the fact that the number of configuration pairs O(M)(ALt), 
0(M)(As) is bounded above by (2M) 2L~ and the subadditivity of the proba- 
bility measure we get that the left-hand side of (3.9) does not exceed 

(2M)2Cl2ex p _ L12+26/K~2 [] 

Remark. It is at this step that the discretization of the angle is useful. 
The fact that M is O(logL) is crucial in order to obtain an arbitrarily 
small probability of the previous events in the limit L 1 ~ oo. The choice 
1/ ix _y[3+~ in (2.1) is done in order to obtain (1) a decreasing energy 
between two blocks (by choosing 6 < E) if the distance between blocks have 
the same order as the side of the block, (2) a probability estimate uniform 
with respect to 0. Similar estimates are obtained in the case M = 1 by 
Khanin and Sinai. (16) 

In order to prove Lemma 2.4, we need the following crucial fact which 
would be used constantly in the sequel. 

Lemma 3.3. Let (A]i)i=I...N, and (A2j)j=l.. .u2 be two families of 
disjoint subsets of 22. Call 

NI N2 

A I =  ~.JAIi and A2= LJA2j 
i = 1  j = l  
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If, for any i and any j 

Prob(at least for one configuration pair 0(M)(A~), 0(M)(A2j) 

IAH(O(M)(A,i),o(M)(Azj)[ >1%) < e 

Then 

Prob [ at least for one configuration pair 0 (M)(AI) ' 0 ( M!(A2 ) 

IAH(O(M)(A1),o(M)(A2))[ >1 i~j~ < N1N2r 

(3.13) 

(3.14) 

Proof. The events in (3.14) are 

0(M)(AI)0(M)(A2)  " . 

If we can prove that A is contained in B, where 

B = [,.) [..J {J/IAH(O(M)(AIi),O(M)(A2j)I /> a/j} (3.16) 
i, j 0(M)(AI~), 0(M)(Aaj) 

The subadditivity of the probability measure implies (3.14). 
We prove B c is contained in Aq Let J be an element of B~; then, for 

any i,j,O(~t)(Ali),O(M)(A2fl we get 

IAH(O(M)(A,i),O(M)(A2j))(J)I < e~ij (3.17) 

Therefore, for any configuration pair 0(M)(A0,0(M~(A2), the following 
inequality is true: 

IAH(O (U>(Al), 0 (M)(A2))I < 2 % (3.18) 
t , j  

and J belongs to A c. The lemma is proved. [] 

Proof of Lemma 2.4. Using Lemmas 3.2 and 3.3, we get 

Prob [at least for one configuration pair 0 (M)(AL,), 0 (M)(AL]\A2L,) 

I~H(0~'>(AL,),0<'>(AL,I\A2L,))I ~ L2+~ E ] ] I~l ~+~ 
J 

< 2(L,)2(2M)2L:e,,p 2+~ - L 1 / K  2 (3.19) 
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Now, [z~[ is equal to Ll[pi[, where pi are the centers of squares with side 2; 
therefore ~i l / ]z i]  3+` < K4L~ 3-~ for some constant K 4. 

If we choose 0 < r < e, we get that 

Prob[ at least for one configuration pair o(M'(Ac,), o(M)(AL{\A2c,) 

]AH(O(M)(AL~),o(M)(AL~\AzL,))[ > K4L~ -~] 

is smaller than /(sex p - L ~ + 2 8 / 2 K ~  for some constant K 5 if L~ is big 
enough. Since ~T,  = lexp - L2+2a/2K2 < 0% the first Borel Cantelli lemma 
implies Lemma 2.4. �9 

Step 3 

Step 3 is based on the recursive subdivision of crowns shown in Fig. 1. 
One defines 

-~l{ o) = A2L+t\At, g t  l) = AL+I\AI, ~2 {1) = A2L+t\AL+ l 

Now one defines recursively 

g'i {K), i = 1 . . . .  , 2  K 

by 

~z ~ '~  = g~'r 1 o u -~2~f + ~) 

D 
I .  . . . . . . . . .  J 

g~2~ 

i g ~ 2 )  t 

ga 2) 

Fig. 1. 
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We obtain the following hierarchy: 

AM((AL+,), O(A2L +,)) 

= 2AH(O(A,),O({(1K+'))) 

where 

2 K 

+ ~. {AH(O(~j(K+')),O(~j(K+'))) + 2AH(O(@x+O),O(~j(+K+t>))} 
j= l  

K 
+ 2 Be (3.20) 

p=2 

2e - 1 2P - 2 ff (P) 
2 + 2 t J=l  j=! 

2p-1+2 
+ ~ 2AH(O(At),O(~.~P))) (3.21) 

J=2 
In order to apply probability estimates, we first discretize the 0 as in Step 2, 
but with different M: Let Rp be the two first sums in (3.21) and/~e ~t) the 
same sums but with discretized 0. We get the following lemma: 

Lemma 3.4. If we choose K=[log[L(logL)-l]/log2] and if l < 
(logL) I/2 then, for some constants K 6 and K 2 

K ~ L I -c 
2 IJq,,- R~M~I < K, 2,~_,( logL) 2 (3.22) 
p=l 

K A H  ( 2P-'+2 ) 
~,, 0(AI), U 0(~ ~p)) < Kv(logL) -~ (3.23) 

p=2 j=2 

Proof. 
that 

<2M-'[F(I ,L)]  2 q=jL=-,+, K=I[ x~,q 
yE BK+ l+(j+2)L2-e 

K + ( j + 2 ) L 2 - e + I  }2 
x 2 l/s 

s = q  

Let B n be the crown defined by [x I = n. It is straightforward 

,} 
Ix - y l  ~+~ 

(3.24) 
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Now 

x E Bq 
y E  BK+ ( j  + 2)L2-P + I 

and 

Ix - y l  3+" 
< K8q[K+ (j + 2)L2-e + l -  q ] - 2 - ,  

(3.25) 

K + ( j + 2 ) L 2  P+! \ 2  

~=q 1/s) <q-2[K+(j+2)L/2e+l-q] 2 (3.26) 

If we remark that in the right-hand side of (3.24) q is less than l + 
(j  + 1)L2 -e the last three sums in the left-hand side of (3.24) are less than 

L/2e  

[ K +  ( j  + 2)L2-e + l -  q ] - ' <  K9(L2-e)I- '  (3.27) 
K=I 

Collecting all these estimates, the left-hand side of (3.24) is less than 

j - ' ( L 2 - e ) ' - '  
(3.28) 

Km2M-'[F(1, L)]2 
Therefore 

Kllp(L2-P)l-" 
I/~P -/~e{M)I < 2M-l I F(I,L)]2 (3.29) 

Summing on p leads to (3.22). We estimate now 

[ 2t'-1+2 ) 
U 

~, j=2 

It is straightforward that 

Therefore, the right-hand side of (3.23) does not exceed KI312(L/2K) -1-" 
which together with our hypothesis implies (3.23). The lemma is proved. 

[] 

This lemma, with the choice M = [(1 - e)logL/log2] implies that 

K 
s 1 4 _  /~M] < 2K6(logL)-2 

p=l 
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and we have to prove Lemma 2.5. With discretized O. We consider the first 
sum in (3.21); the proof for the second sum is done along the same lines. 

We first subdivide each crown ~j(P), ~.(+~ in squares ~!qe) and ~(P) '~'j + 2,r of 
width 2L2-P; each crown is not exactly subdivided, because there is the 
centered box A l. On each crown, there are four rectangles of side 21 • 

~ ( p )  ~ ( P )  2L2 -p we call them also ,~j,q , ~j+z2. As we will see later from a probabilis- 
tic point of view, the distinction between squares and rectangles is irrele- 
vant. Notice that there are 4 ( 2 j -  1) squares in each crown and four 
rectangles. See Fig. 2. 

[-1 

rl 
Fig. 2. 

According to this decomposition AH(O (M) (~f), 0 (M) (~.(+P~)) can be written 
a s  

(8j) (Sj + 16) 

E E AH(O(M)(ffJ!qP))'o(M>(~j(P)2, r)) (3.31) 
q = l  r = l  

The following lemma is similar to Lemma 3.2, but here we have to take into 
account of the decrease which comes from the rotation a. 

Lemma 3.5. If Zq and z r denote the center of ~!qP) ~(e) ,W+2,r, then, for 
some constants K14, K15 and any 8 > 0 

Probtat  least for one configuration pair 0 (M)tk~j,q ( P)~,] 0 ( M)[I vffj+2,r] (p) ~ 
k 

IAH(O(M)(ffj}qe)),O(M)tff(P)~, j+2,r)]l ~'~1 K, 5 (J)-2(L2-p)3+8(l~ ~ } 

< 2(2M)z(m-p)2exp [ (L2-p)2+ 2~ ] 
K? 4 logL (3.32) 
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Proof of Lemma 3.5. We consider first the case where ~.!qe), ~j(+P~,r 
are squares. Let us fix the configuration o(M)(~j}qP)),o(M)(~j~)Zr) and 
define the random variable: if x E ~!qe) and y E ~-(+e~, r 

Jxysin2(a=- ay)[F(I'L)!I IZq--ZrJ3+'Cos(O(~ M)- O) M)) (3.33) 
j- 

It is straightforward that 

E(~) = 0 

[F('q 2) < K16 Max 

(p) 
Y ~ j + 2 , r  

lyl 14 1 < K~ 4 

K~xl 1 / ~  [log(1 + l / j ) ]  ~ 
(3.34) 

for some constant K14. Therefore, the random variables B are sub-Gaussian 
random variables and the variance of 

y) 

is bounded above by K~4(L2-P)4. Now if we choose t in Lemma 3.1 as 
t = ( ( A 2 - e ) 3 + 8 / f - 6 ) ( l o g L )  ~i2, we get 

1 (L2-P)'+~(logL)'/2 

and this lemma implies that 
[- 

Prob / ~ ~(x, y) >1 (LZ-P)3+8(logL) '/2 

L y e 5sp2,~ 

(L2-P)2+ZSIogL 
2 e x p  - ( 3 . 3 5 )  

Now, using the fact that the number of configuration pairs O(M)(~.(P)~ 
\ J , q  : O(M)(~r is bounded above by (2M) 2(r2 p)~ and the subadditivity of the 

probability measure we get that the left-hand side of (3.32) does not exceed 

2(2M)Z(LZ-O2ex p _ (L2-p)2+2~l~ L 

The lemma is proved if ~j!qP) and ~r are squares. If ~j(f) or ~j(+P~,~ are 
rectangles, the upper bound for the variance of ~ ~ (x, y)  is always true, the 
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lower bound on t: 

t >>- ~ (L2-P)1+~(togL) '/2 

is true and also (3.35). Therefore, the distinction between squares and 
rectangles is irrelevant. And the lemma is proved in all the cases. �9 

Proof of Lernma 2.5. The Lemmas 3.3 and 3.5 lead to the fact that 

Prob[ at least for one configuration pair 0 < M)(_@p))O (M)(gj(+e~) 

> 
K14(log L ) 1/2 

[F(I ,L)I  2 

] 
(j)-2(L2-p)3+8 ~ 1 ] 

Zq,Zr ]Zq -- Zr[ 3+e 

does not exceed 

2(Sj)(8j + 16)exp{ M2(L2-e)21og2- (logL) (L2-p)2+2aK~ 2 } (3.36) 

It is straightforward that 

E 1 
zq, zr t z q  - zrL 3+' 

and therefore 

< KI5 J (3.37) 
(L/21') 3+" 

2p-l+l ( j ) -2  1 (3.38) 
]2 (L2-P)3+8(I~ '/2 ~' zA3+. 

+:, [ F(I,L) Zq, Zr [ Z q -  

does not exceed 

On the other hand 

(log2P - 1)(L2 -e) ~ - '  (log L) 1/2 
(3.39) 

2p-I+ 1 
~, (j)(j + 2) < KI623p 

j = l  

for some constant Kj6. Collecting these estimates and using Lemma 3.3, we 



Absence of Breakdown of Symmetry for the Plane Rotator Model 645 

obtain that 
(2p_i+ 2 

Prob at least for one configuration 0 ~M) U 6r 
j=l ] 

2p--J+2 
2 j=l 

K'5(l~ '(L2 e)* "] > log2 e- - - 
[F(1, L)] 2 

does not exceed 

Now 

K1623eexp[2M(L2-P)Zlog2. (L2-P)2+2~K22 logL} 

KIT 

Therefore, if we choose 

X , .~1/2  (l~ 2e-1) 
1-5-~ ( ) 2 (LZ-P) ~-~ 

e=2 [F(I,L)] 
is bounded above by 

(K + 2)(2-XL)~-'(logL) '/2 
[F(I,L)] 2 

(3.40) 

(3.41) 

K= I log(L(logL)-')log2 ] 

as in Lemrna 3.4, the right-hand side of (3.42) does not exceed 
K~s(logL)-1/2+8-,. The su'badditivity of the probability measure implies 
that 

Prob at least for one configuration 0 (M) U U @p) 
p=2 j=l 

K 2e-~+2 ] 
2 Z > K,8(logL) 

p=2 i=l 

does not exceed 

K,6 p = 23pexpI 2M ( L2-P)21og ( L /2e)2+ 2'~ (log L ) z (3.42) 
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Remember that 

K =  log2 and M =  ( l - e )  

therefore (L2 -e) > (L2 -~) > (logL) and if L is big enough (logL)28/K~2 
- 2 ( 1 -  e) is bigger than (logL)28/2K~2; therefore, the sum (3.42) is 
bounded above by 

K 
23eexp- 

p = l  

which does not exceed 

K23 Kexp -- (L2-  K) 2 (log L) 2+ 2s 
2K~2 

(L2-p)2(log L) 2+28 

2K22 

<( l~  L ) 3exp 
(log L) 2+28 

(3.43) 

Now, if L is big enough, the right-hand side of (3.43) is bounded above by 
e x p -  (logL)Z+28/4K22, which is the general term of a summable series. 
Therefore, we can apply the Borel-Cantelli lemma and the lemma is 
proved. �9 

Step 4 

We are now at Step 4. We have to perform an L ~ estimate of 

2AH(0(A,), 0(-g( K+ l))) 

2K 

+ 2 
j = l  

(3.44) 

The first term is bounded above by 

g172i=lj=l+lE I x - y ]  3+~ -[F(I,L)] 2 tl/r (3.45) 

It is straightforward that 

1 (3.46) 2 Ix - y l  3+~ < K8i[j- i ] -2 - ,  
x E B  i 
y @ B j  

and 
J 1 ( j - l )  

~ t  r < ' - - -V--  
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therefore, (3.45) is bounded above by 

l [log L] K17 t2 i ( J -  l )  2 

which is less than 

KI7 t2 } 1 - K17,2 ['ogL] 1 ~< {[(logg) + l] ' 

[F(I,L)]2 j=~l+l (J -[)" [r(l,L)] 2 

if l < (logL) 1/2 as in Lemma 3.4 then (3.48) is bounded by 

K18(log L ) -  1-, 

The sum in (3.44) is bounded above by 

K19t,2 2 x+t 

[g ( t ,L ) l  2 

jL2-K-I+I ( j +  1)L2 -K 1+l 

E E m=(j--l)L2-K-I+l n = m + l  

ix-# ,=roT) 
which, by (3.46), does not exceed 

K19t2 7--~'2K [ m=(j--l) Lz-K-'+ljLz-K-I+IE 1 (J+I)LZ-K-I+IE (n-m)'l ] 
[F(I,L)I 2 =1 m n=m+l 

if we take into account the fact that m/> ( j  - 1)L2 -K-1 + l 

(j+I)L2 -x t+l ( j+ I )L2  K-t+l--m L2-K 
1 1 

1 _ ~ ]  n ~ < ~ n -7 
(n - m)'  1 n=l n = m + l  n=  

which does not exceed Kz0(L2-K)I-L Now 

2 T M  jL2 K-I+l L+I 
E E 1-j21 

j = l  m=(j--I)L2-K-I+I m =l m 

(3.47) 

(3.48) 

(3.49) 

(3.50) 

As in Lemma 3.4, (L2 -K) = 0(logL), therefore, (3.49)< K22t2(logL) -c. 
This proves the Lemma 2.6. 

(3.51) K22 t2 1)(L2-K) 1 
(3.47) 4 [F(I'L)] 2 log( L + -" 

which is less than K211og((L + l)/l). Collecting all these estimates, we get 
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